माना $(1+\mathrm{x})^{\mathrm{n}}$ के प्रसार में चार क्रमागत पदों के गुणांक $2-p, p, 2-\alpha, \alpha$ हैं। तो $p^2-\alpha^2+6 \alpha+2 p$ का मान बराबर है
$4$
$10$
$8$
$6$
$\left(1-\frac{1}{x}+3 x^{5}\right)\left(2 x^{2}-\frac{1}{x}\right)^{8}$ के द्विपद प्रसार में $x$ से स्वतंत्र पद है
यदि धन पूर्णाकों $m$ तथा $n$ के लिए
$(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m-n} y^{m+n}$ तथा $a_{1}=a_{2}=10$ हैं, तो $(m+n)$ बराबर है
$\alpha>0, \beta>0$ ऐसा हो कि $\alpha^{3}+\beta^{2}=4$ हो। यदि $\left(\alpha x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}$ के द्विपदीय विस्तार में $x$ से स्वतंत्र पद का अधिकतम मान $10 k$ है, तो $k$ बराबर है
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के प्रसार में ${x^{32}}$ का गुणांक होगा
$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।